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Abstract

Modern technologies in manufacturing, transportation, energy generation and distribution, smart
buildings, smart cities and so on heavily involve large-scale, distributed networked control systems
(NCSs). Nowadays, the communication between sub-systems within a NCS occurs mostly over
wired networks. However, in large scale systems, the cost of installation and maintenance of these

wired networks can be significant.

One method of cost reduction while also gaining flexibility, is to replace these wired networks
with wireless networks. Utilizing wireless networks within NCSs allows for greater flexibility, since
no new cables have to be installed when adding new sensors and/or actuators. Further, it opens up
for the use of remote sensors and actuators in locations, that are prohibitive with cabled networks.
These sensors and actuators can be battery powered and mounted on moving objects, such as
vehicles or drones. This opens up for entirely new possibilities for control and sensing within
NCSs.

However, wireless networks introduce network effects that can severely affect the performance
of the sub-systems, and in some cases, lead to instability. These effects include, but are not limited
to, congestion, interference, packet loss and bandwidth limitations. In this thesis, we address the
controller and estimator design for NCSs that are connected with wireless networks. We show, that
designs that take these network effects into account can not only achieve increased performance,

but also guaranteed closed-loop stability.

The first part of this thesis considers the synthesis and analysis of controllers and estimators
for networks affected by random packet loss. In particular, Chapter 3 considers controller and
estimator synthesis and analysis for linear systems affected by independent and identically dis-
tributed packet loss. We establish a form of duality that extends the duality in the classical linear
quadratic Gaussian result to the design for systems affected by packet loss. Chapter 4 extends
the results from Chapter 3 and presents a method to synthesise controllers for networks where the
packet loss model contains memory as well. This however results in a large number of controllers.
To reduce the amount of controllers, we present three methods that trade-off controller complexity

and control performance.

The second part of this thesis (Chapters 5 and 6) considers the control design problem for a
large distributed system with a bandwidth limited wireless network. The wireless transmission
protocol features a limited number of reliable transmission slots with negligible packet dropouts

and a more widely available transmission period, where packet collisions and delays occur more
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frequently. We propose a controller and scheduler co-design that optimally selects both the sched-
ule on which actuators to address, and the control inputs for the sub-systems that are addressed.
Simulation studies illustrate that the online optimal co-design method results in significantly im-
proved performance over heuristic scheduling. However, the computational complexity for the
online algorithms makes practical implementations of the proposed method prohibitive. To re-
duce the computational complexity, the design is extended by the use of a novel model predictive
control (MPC) algorithm that combines approximations to infinite horizon cost functions with a
short online prediction horizon. This results in improved control performance while maintaining
relatively low computational complexity.

In this thesis, we show that taking networks effects, such as packet loss and bandwidth lim-
itations, directly into account in the controller and estimator design phase leads to significant

performance gains and in some cases, guaranteed closed-loop stability.
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Notation

1>

x% N
Pr{X}
Pr{X|Y}
Pr{X; Z}

Definition

A sequence

A set

The set of real numbers

Vector with n elements taking values in the set R

Matrix with n rows and m columns taking values in the set R
The set of natural numbers
The set of all integers

The set of integers {0,1,---
The cardinality of the set A

The matrix A is positive (negative) definite

,a—1}

The matrix A is positive (negative) semi-definite

The matrix A — B >0

Transpose of the matrix A

The inverse of matrix A

Pseudo inverse of matrix A

Trace of the square matrix A

Spectral radius of the matrix A

The matrix with X on its (block-)diagonal

The n x n matrix with ones on its diagonal

The n X m matrix containing zeros

The i’th column vector in the matrix A

The j’th element in the i’th column vector of the matrix A
Two-norm of x

Weighted norm of x squared i.e. z7Qx

Rounds z up to the nearest larger integer

Rounds = down to the nearest lower integer

x modulo N returns the remainder after division for &
The probability for the event X

The probability for the event X knowing Y

The probability for the event X which distribution is parameterized by Z
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E{X}
E{X]Y}
E{X; Z}
Is (y)
Ui, j)

N (1, 2)
x~N (1, %)
x ~U(i, )

vec (A)

n!

viii

Expected value of the random variable X

Expected value of the random variable X knowing Y

Expected value of the random variable X which distribution is parameterized by Z
The indicator function returns one if y € S or zero else

Uniform distribution in the interval [i, j]

Gaussian distribution with mean g and (co-)variance ¥

The random variable z is Gaussian distributed

The random variable x is uniformly distributed

The Kronecker product

T
The vector of the columns of A stacked i.e. [a{ al - a }

S

The composition of functions
The factorial n! =n(n —1)(n —2)---1



Abbreviations

BI

CA
CAP
CFP
CSMA
CSMA/CA
FDMA
flop
FSMC
GA
GTS
i.4.d
JLS
LQ
LQG
LQR
LTI
MA
MJLS
MMSE
MPC
MSS
NCS
NP
PAN
RR
SDP
TCP
TDMA
UDP

beacon interval

cost averaged

contention access period
contention free period

carrier sense multiple access
carrier sense multiple access with collision avoidance
frequency division multiple access
floating point operation

finite state Markov chain

group averaged

guaranteed time-slot

independent and identically distributed
jump linear system

linear quadratic

linear quadratic Gaussian

linear quadratic regulator

linear time-invariant

Markov averaged

Markov jump linear system
minimum mean square error
model predictive control

mean square stability

networked control system
non-deterministic polynomial-time
personal area network

round robin

semi-definite program
transmission control protocol

time division multiple access

user datagram protocol
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